TensorFlow.js Image Processing Example 1

 

This example (inspired by TensorFlow.js tutorials https://www.tensorflow.org/js/tutorials) will demonstrate a simple linear model with using a single image and. It included flowing steps:

Create html and js files.

Load the image.

Define the model.

Train the model and making some predictions.

This model permits just to invert the image. It works with a recent version of Chrome or another modern browser (not checked). It is recommended to run Chrome with "--allow-file-access-from-files" key to enable loading local file images.

Copy the following code into an html file and open it with Chrome. Use "Development tool" in option menu for debugging.

<!DOCTYPE html>

<html>

<head>

  <meta charset="utf-8">

  <meta http-equiv="X-UA-Compatible" content="IE=edge">

  <meta name="viewport" content="width=device-width, initial-scale=1.0">

  <title>TensorFlow.js Example1</title>

 

  <!-- Import TensorFlow.js -->

  <script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs@1.0.0/dist/tf.min.js"></script>

  <!-- Import tfjs-vis -->

  <script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs-vis@1.0.2/dist/tfjs-vis.umd.min.js"></script>

 

 

  <!-- Import the main script file -->

  <script src="TF.js"></script>

 

</head>

</html>

 


Copy the following code into an TF.js file. Copy "LenaSmall.jpg" image(above) in the same folder. The code is executed in following way

Start() function load image. When the image is fully loaded, Run() function executes all other.

Run() calls GetModel() to define the model architecture.

Run() calls TrainAndPredict() function which do training and do prediction, by using original image.

async function OnLoadImage(Event)

{

    await Run(Event.srcElement);

}

async function Start()

{ 

     var Img = document.createElement("img");

     Img.src="LenaSmall.jpg";

     Img.addEventListener("load", OnLoadImage); // allow to know that image

                                                // is ready

     document.body.appendChild(Img);  

}

 

document.addEventListener("DOMContentLoaded", Start);

 

async function Run(Img)

{

    var Model = GetModel();

    tfvis.show.modelSummary({name: "Architecture", tab: "Model"}, Model);

      // show model in Right panel

    await TrainAndPredict(Model, Img);

}

 

 

 

function GetModel()

{

    var Model = tf.sequential(); // simplest model 

   

    var Flat = tf.layers.reshape({inputShape: [,3], targetShape:[,1]});

// convert RGB image to 1-dimentional

//array, as colors are processed in same

// way

    Model.add(Flat);

   

    var Layer = tf.layers.dense({units: 1});    // linear layer y=ax+b

    Model.add(Layer);

   

    Flat = tf.layers.reshape({targetShape:[,3]}); // back to RGB

    Model.add(Flat);

   

    return Model;

}

 

async function TrainAndPredict(Model, Img)

{

    var Scale = 255;

    var From = tf.browser.fromPixels(Img).div(Scale),To; // take image from

// HTML and scale to 0-1

    To = From.mul(-1).add(1);                   // Create target To=1-From

    ShowInVisor(From);                          // Show in right panel

    ShowInVisor(To);

 

 

    var Iterations = 50, Rate = 0.03;

 

    await Model.compile                         // Prepare(compile) model

    ({

        optimizer: tf.train.adam (Rate),

        loss: tf.losses.meanSquaredError,

        metrics: ["mse"],

    });

 

 

 

 

    await Model.fit(From, To,                   // Do traing, to define a,b

    {

        epochs : Iterations,

        callbacks: tfvis.show.fitCallbacks(

        { name: "Training Performance" },

        ["mse"],

        { height: 200, callbacks: ["onEpochEnd"] }

    )

    });

 

 

    var Res = Model.predict(From);              // Do predict with From

// image

    ShowInVisor(Res);

 

}

 

async function ShowInVisor(Img)                 // Helper to display images

{

    Img=tf.maximum(Img,0);                      // Image are float

    Img=tf.minimum(Img,1);

    var Surface =  tfvis.visor().surface({ name: "Images", tab: "Datas"}); 

    var Canvas = document.createElement("canvas");

    tf.browser.toPixels(Img, Canvas);

    Surface.drawArea.appendChild(Canvas);

    tfvis.visor().setActiveTab("Datas");

}

 

 

Комментариев нет:

Отправить комментарий

Новости AI.

На правах и обязанностях рекламы : Наша новая AI программа "Ноктюрн" позволит Вам безошибочно определить создано  ли художественно...