TensorFlow.js Image Super Resolution Example

 

This example shows super resolution convolution model with using a single image. This model based on article "Image Super-Resolution Using DeepConvolutional Networks" Chao Dong, Chen Change Loy, Kaiming He, Xiaoou Tang. It works with a recent version of Chrome or another modern browser (not checked). It is recommended to run Chrome with "--allow-file-access-from-files" key to enable loading local file images.

Copy the following code into a html file and open it with Chrome. Use "Development tool" in option menu for debugging. First variant uses bilinear interpolation the second one bicubic.


<!DOCTYPE html>

<html>

<head>

  <meta charset="utf-8">

  <meta http-equiv="X-UA-Compatible" content="IE=edge">

  <meta name="viewport" content="width=device-width, initial-scale=1.0">

  <title>TensorFlow.js Example</title>


  <!-- Import TensorFlow.js -->

  <script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs@3.1.0/dist/tf.min.js"></script>

  <!-- Import tfjs-vis -->

  <script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs-vis@1.0.2/dist/tfjs-vis.umd.min.js"></script>


 <script>

var CountImage=0;

function OnLoadImage(Event)

{

    CountImage++;

}

async function AddImage(Name, ID) 

{  

     var Img = document.createElement("img");

     Img.src=Name;

     Img.id=ID;

     Img.addEventListener("load", OnLoadImage);

     document.body.appendChild(Img);   

}

async function Idle()

{

   if (CountImage==1)

   {

        CountImage++;

        Run("A");                   // start training when image loaded

   }

}


async function Start() 

    AddImage("Lena.bmp","A");

    setInterval(Idle,50);

}

document.addEventListener("DOMContentLoaded", Start);






async function Run(To) 

{

    var From,Model,Bin=4;

    

    To=GetScreenTensor(To);

    From=To.resizeBilinear([To.shape[0]/Bin, To.shape[1]/Bin]);     // Upscaling and Downscaling

    From=From.resizeBilinear([To.shape[0], To.shape[1]]);           // by factor 4

    ShowTensor(From,"B");

    

    

    

    //return;

    Model=GetTensorModel();

    tfvis.show.modelSummary({name: "Architecture", tab: "Model"}, Model);

    CompileTensor(Model);

    await TrainTensor(Model, [From], [To], 1000);

}






function GetTensorLayer(Prev, Kernel, Filters, Activation) // Get one convolution layer

{

    var Layer;

        

    Layer = tf.layers.conv2d                

    ({

        kernelSize: Kernel,

        filters: Filters,

        activation : Activation?"relu":undefined,

        padding: "same", 

        useBias: false,                   

    }); 

    Prev = Layer.apply(Prev);

            

    return Prev;

}



function GetTensorModel() 

{

    var Kernel=9,Filters=32;

    var Inp = tf.input({shape:[,,1]}),Prev,Sum;

    

    Prev=GetTensorLayer(Inp, Kernel,   Filters, 1);             // Model icludes 3 layers

    Prev=GetTensorLayer(Prev, 1,       Filters/2, 1);           // first andsecond non-linear

    Prev=GetTensorLayer(Prev, 3,       1);                      // third averaging one


    Sum=tf.layers.add();                                        // Residual layer

    Prev=Sum.apply([Inp, Prev]);

   

   

    return tf.model({inputs:Inp, outputs:Prev});


}




async function TrainTensor(Model, Froms, Tos, Count) 

{

    var Callbacks=tfvis.show.fitCallbacks           

    (

        { name: "Training Performance " },

        ["mse"],

        { height: 200, callbacks: ["onBatchEnd"]}

    );

    Callbacks.onEpochEnd = function(epoch, logs)        // Apply model and show result for each iteration  

    {                                                                           

        tf.tidy(() =>                                   // to clear memory

        {

            var From = PredictTensor(Model, Froms[0]);

            ShowTensor(From, "Result");

        });

    };

    await Model.fit(tf.stack(Froms), tf.stack(Tos), { epochs : Count,callbacks: Callbacks} );

}

function CompileTensor(Model) 

{               

    Model.compile

    ({

        optimizer: tf.train.adam(),

        loss: tf.losses.meanSquaredError,

        metrics: ["mse"],

    });

}

function PredictTensor(Model, From) 

{

    return Model.predict(From.expandDims(0)).squeeze(0);

}


function GetScreenTensor(ID) 

{

    var Res=tf.browser.fromPixels(document.getElementById(ID)).div(128).sub(1);

    return Res.mean(2).expandDims(2);

}


async function ShowTensor(Img, ID)

{

    var z=0.5;

    Img=Img.div(2).add(z);

    Img=tf.keep(tf.clipByValue(Img, 0, 1).squeeze());

    var Canvas=GetTensorElem("canvas",document.body,ID);

    tf.browser.toPixels(Img, Canvas);

    tf.dispose(Img);

}


function GetTensorElem(Type, Parent, ID) 

{

    var Elem = document.getElementById(ID);

    if (!Elem) 

    {

        Elem = document.createElement(Type);

        Elem.id = ID;

        Parent.appendChild(Elem);

    }

    return Elem;

}

 </script>


</head>



</html>

<!DOCTYPE html>

<html>

<head>

  <meta charset="utf-8">

  <meta http-equiv="X-UA-Compatible" content="IE=edge">

  <meta name="viewport" content="width=device-width, initial-scale=1.0">

  <title>TensorFlow.js Example</title>


  <!-- Import TensorFlow.js -->

  <script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs@3.1.0/dist/tf.min.js"></script>

  <!-- Import tfjs-vis -->

  <script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs-vis@1.0.2/dist/tfjs-vis.umd.min.js"></script>


 <script>

var CountImage=0;

function OnLoadImage(Event)

{

    CountImage++;

}

async function AddImage(Name, ID) 

{  

     var Img = document.createElement("img");

     Img.src=Name;

     Img.id=ID;

     Img.addEventListener("load", OnLoadImage);

     document.body.appendChild(Img);   

}

async function Idle()

{

   if (CountImage==2)

   {

        CountImage++;

        Run("A","B");                   // start training when image loaded

   }

}


async function Start() 

    AddImage("LenaBicubic.bmp","A");

    AddImage("Lena.bmp","B");

    setInterval(Idle,50);

}

document.addEventListener("DOMContentLoaded", Start);






async function Run(From,To) 

{

    var From,Model,Bin=4;

    

    To=GetScreenTensor(To);

    From=GetScreenTensor(From);

    Model=GetTensorModel();

    tfvis.show.modelSummary({name: "Architecture", tab: "Model"}, Model);

    GetTensorElem("div",document.body,"LN")   

    CompileTensor(Model);

    await TrainTensor(Model, [From], [To], 1000);

}






function GetTensorLayer(Prev, Kernel, Filters, Activation) // Get one convolution layer

{

    var Layer;

        

    Layer = tf.layers.conv2d                

    ({

        kernelSize: Kernel,

        filters: Filters,

        activation : Activation?"relu":undefined,

        padding: "same", 

        useBias: false,                   

    }); 

    Prev = Layer.apply(Prev);

            

    return Prev;

}



function GetTensorModel() 

{

    var Kernel=9,Filters=32;

    var Inp = tf.input({shape:[,,1]}),Prev,Sum;

    

    Prev=GetTensorLayer(Inp, Kernel,   Filters, 1);             // Model icludes 3 layers

    Prev=GetTensorLayer(Prev, 1,       Filters/2, 1);           // first andsecond non-linear

    Prev=GetTensorLayer(Prev, 3,       1);                      // third averaging one


    Sum=tf.layers.add();                                        // Residual layer

    Prev=Sum.apply([Inp, Prev]);

   

   

    return tf.model({inputs:Inp, outputs:Prev});


}




async function TrainTensor(Model, Froms, Tos, Count) 

{

    var Callbacks=tfvis.show.fitCallbacks           

    (

        { name: "Training Performance " },

        ["mse"],

        { height: 200, callbacks: ["onBatchEnd"]}

    );

    Callbacks.onEpochEnd = function(epoch, logs)        // Apply model and show result for each iteration  

    {                                                                           

        tf.tidy(() =>                                   // to clear memory

        {

            var From = PredictTensor(Model, Froms[0]);

            ShowTensor(From, "Result");

        });

    };

    await Model.fit(tf.stack(Froms), tf.stack(Tos), { epochs : Count,callbacks: Callbacks} );

}

function CompileTensor(Model) 

{               

    Model.compile

    ({

        optimizer: tf.train.adam(),

        loss: tf.losses.meanSquaredError,

        metrics: ["mse"],

    });

}

function PredictTensor(Model, From) 

{

    return Model.predict(From.expandDims(0)).squeeze(0);

}


function GetScreenTensor(ID) 

{

    var Res=tf.browser.fromPixels(document.getElementById(ID)).div(128).sub(1);

    return Res.mean(2).expandDims(2);

}


async function ShowTensor(Img, ID, Zoom)

{

    var z=0.5;

    Img=Img.div(2).add(z);

    Img=tf.keep(tf.clipByValue(Img, 0, 1).squeeze());

    var Canvas=GetTensorElem("canvas",document.body,ID);

    tf.browser.toPixels(Img, Canvas);

    if (Zoom)

    {

        Canvas.style.width=Img.shape[1]*Zoom+"px";

        Canvas.style.height=Img.shape[0]*Zoom+"px";

   }

   tf.dispose(Img);

}


function GetTensorElem(Type, Parent, ID) 

{

    var Elem = document.getElementById(ID);

    if (!Elem) 

    {

        Elem = document.createElement(Type);

        Elem.id = ID;

        Parent.appendChild(Elem);

    }

    return Elem;

}

 </script>


</head>



</html>




Lena


LenaBicubic






Комментариев нет:

Отправить комментарий

Новости AI.

На правах и обязанностях рекламы : Наша новая AI программа "Ноктюрн" позволит Вам безошибочно определить создано  ли художественно...